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Starting with two supersymmetric dual theories, we imagine adding a chiral perturbation

that breaks supersymmetry dynamically. At low energy we then get two theories with soft

supersymmetry-breaking terms that are generated dynamically. With a canonical K�ahler po-

tential, some of the scalars of the \magnetic" theory typically have negative mass-squared,

and the vector-like symmetry is broken. Since for large supersymmetry breaking the \electric"

theory becomes ordinary QCD, the two theories are then incompatible. For small supersym-

metry breaking, if duality still holds, the magnetic theory analysis implies speci�c patterns of

chiral symmetry breaking in supersymmetric QCD with small soft masses.

1 Introduction

The low energy behavior of gauge theories, which are often strongly-coupled in the infrared,
becomes more tractable in the presence of supersymmetry. While supersymmetry doubles the
spectrum of the theory, and in particular, requires the existence of scalars to accompany the

chiral \matter" fermions of the theory, it also results in various constraints on the system. This
has allowed for the discovery of interesting patterns of low-energy dynamics in N = 1 gauge
theories. In particular, we know of dual pairs of theories 1: theories with di�erent gauge sym-
metry and matter content, that have the same physics at low energies. Clearly, the two theories

must have the same global symmetries, and satisfy 't Hooft anomaly matching conditions: the
massless fermions give the same contributions to the various global triangle anomalies, in the
two theories. Furthermore, in some cases, while one theory is strongly coupled in the infrared,
its dual is weakly coupled. In analogy with electric-magnetic duality, the two dual theories are

usually referred to as \electric" and \magnetic".
Alas, the real world is not supersymmetric at low energies, and so it is tempting to ask

whether this exciting phenomenon survives in non-supersymmetric theories 2�6. Starting with

two (supersymmetric) dual theories, we wish to introduce supersymmetry breaking into the two



theories, and to study the resulting infrared dynamics. The �rst question one encounters is
how to introduce supersymmetry breaking into the system. One way to do this is to break
supersymmetry explicitly. For example, as in the MSSM, we could add soft supersymmetry-

breaking terms, such as squark and gaugino masses, in the electric theory. However, it is not
clear what these map into in the magnetic theory, since the correspondence between the two
theories is only known to hold in the supersymmetric limit. In fact, even in this limit we generally

only know how chiral operators map between the two theories 7.
Instead, we will add a chiral, supersymmetric perturbation to the theory that triggers spon-

taneous supersymmetry breaking below a certain scale. Since supersymmetry is only sponta-
neously broken, and since the perturbation we add is a chiral superpotential term, we know

what this perturbation maps into in the dual theory, in the limit of unbroken supersymmetry.
Adding the perturbation in the dual theory, supersymmetry is spontaneously broken in this
theory too. We will then have, at low energy, two theories with soft supersymmetry breaking
terms that are generated dynamically. To continue the MSSM analogy, each one of the the-

ories will now resemble a model with gauge mediated supersymmetry breaking 8�9 (GMSB),
in which the MSSM is coupled to a sector that breaks supersymmetry spontaneously, and the
soft supersymmetry-breaking terms of the MSSM are generated dynamically as a result of this

coupling.
We will construct the electric theory so that the scalar masses squared, m2

scalar, generated
in this theory are positive. Surprisingly, however, the scalar masses squared generated in the
magnetic theory, �m2

scalar, will often turn out negative. The global symmetries of the magnetic

theory are then partially broken.
We will consider separately two limits. In the limit of small supersymmetry breaking, we

may hope that the correspondence between the two theories persists. Thus, by studying the
pattern of chiral symmetry breaking in the magnetic theory, when it is weakly coupled in the

infrared, we may learn something about the chiral symmetry of the electric theory, when this
theory is strongly coupled.

In the limit of large supersymmetry breaking, the electric theory we study looks like QCD

with N colors and Nf 
avors. The pattern of chiral symmetry breaking we �nd in the dual
theory is incompatible with that expected for QCD. We can then conclude that the duality
between the two theories no longer holds.

One key ingredient in our analysis is the K�ahler potential of the dual theory, which is

unknown even in the supersymmetric case. We will therefore assume, throughout our analysis,
a minimal K�ahler potential.

2 The model

Let us �rst review some elements of N = 1 duality 1. The �rst example of this duality, given
by Seiberg, involves an electric theory with gauge group SU(N) and Nf \
avors", that is, �elds
Qi, �Qi, in the fundamental and anti-fundamental representation respectively, with i = 1 : : : Nf .

For Nf � N + 2, the theory has a dual, magnetic theory, with gauge group SU(Nf � N), Nf


avors of dual quarks qi, �q
i and gauge singlets M i

j , and the superpotential

W = M i
j qi � �q

j : (1)

In the infrared, the two theories describe the same physics, with the mesons Qi � �Qj of the
electric theory mapped into the �elds M i

j of the magnetic theory. The two theories have the

same global symmetry, SU(Nf)L � SU(Nf)R � U(1)B � U(1)R, and identical global anomalies
('t Hooft anomaly conditions are matched).

It is interesting to see what happens to this picture as we change the number of 
avors 1.

Suppose we start with SU(N) with Nf + 1 
avors and make the \last" 
avor massive, that is,



we add a mass term mQNf+1 � �QNf+1 to the superpotential of the electric theory. The dual of
this theory has gauge group SU(Nf +1�N), Nf +1 
avors, and a superpotential that contains,
among other terms,

M
Nf+1

Nf+1
qNf+1 � �q

Nf+1 + mM
Nf+1

Nf+1
; (2)

where the �rst term comes from eqn. (1), and the second corresponds to the mass term we added

in the electric theory. As a result, the �elds qNf+1, �q
Nf+1 develop vevs, and the gauge group

is broken, or \Higgsed", to SU(Nf � N). Since the \last" 
avor (qNf+1, �q
Nf+1) is eaten, the

magnetic theory becomes SU(Nf � N) with Nf 
avors, precisely the dual we expect for the

electric theory, which below the scale m is SU(N) with Nf 
avors.

We now wish to introduce supersymmetry breaking into the system. We take the electric
theory described above, with N colors and Nf + 1 
avors, and couple it to a sector that breaks
supersymmetry dynamically (the DSB sector), by introducing the superpotential coupling,

S QNf+1 � �QNf+1 ; (3)

where S is a �eld of the DSB sector 9.

In the supersymmetric limit, which is typically attained by setting some superpotential term

to zero in the DSB sector, the theory has a dual description with gauge group SU(Nf �N + 1)
and Nf + 1 
avors. If the �eld S develops a nonzero vev, the term (3) looks like a mass term
for the 
avor Nf + 1, and the magnetic theory is Higgsed by one unit. At low energy then, the
electric theory is SU(N) and the magnetic theory is SU(Nf �N), both with Nf light 
avors.

When supersymmetry is broken, we will assume that the auxiliary component of S, FS, also
obtains a vev. Then, in the electric theory, the masses of the heavy multiplet QNf+1, �QNf+1

are split: while the fermions have mass S, the scalars have m2 = S2 � FS. Here S and FS
stand for the appropriate vevs. As a result, supersymmetry-breaking masses are generated for

the remaining �elds of the electric theory. The gauginos and squarks with i = 1 : : : Nf obtain
masses through loops involving the heavy 
avor �elds. The heavy �elds of the last 
avor Nf +1
therefore act as \messengers" of supersymmetry breaking. In the magnetic theory, the �elds

qNf+1, �qNf+1, are eaten and join the heavy gauge multiplet. But again, since supersymmetry
is broken, the masses of the fermion, scalar, and vector �elds making up that multiplet are
split by amounts proportional to FS. The heavy gauge multiplet then acts as a messenger of

supersymmetry breaking in the magnetic theory. The gauginos, squarks, and scalar M i
j 's with

i = 1 : : : Nf develop masses through loop diagrams, with the heavy messengers running in the
loops.

At low energy we thus obtain two theories, with gauge groups SU(N) and SU(Nf � N),
each with Nf 
avors, that are related by Seiberg's duality in the supersymmetric limit. When
supersymmetry is broken, soft masses are generated in each theory. These masses arise through

\matter messengers" in the electric theory, and through \gauge messengers" in the magnetic
theorya. Assuming a minimal K�ahler potential in the dual theory, we can calculate these soft
masses. We will mainly be interested in the signs of the scalar masses squared. More precisely,
we can construct the theory so that m2

scalar are positive in the electric theory, and so we will

focus on the signs of �m2
scalar in the magnetic theory. We will separate the discussion into two

parts depending on the size of the soft masses.

3 Small supersymmetry breaking

Consider �rst the case of very small supersymmetry breaking, such that the soft masses are very

small compared to all relevant scales in the theory. We can reliably study the magnetic theory at

aThere are actually matter messengers in the magnetic theory as well10.



low energies when Nf < 3N=2, where the theory is infrared-free, or in the large N limit, where
it has an infrared perturbative �xed point for Nf just above 3N=2 11. If �m2

scalar is su�ciently
small, there will be enough running from the scale at which the soft masses are generated to

the scale �mscalar, for the masses to reach their asymptotic behavior. We then �nd the following
sum rule:

m2
q +m2

�q +m2
M ! 0 ; (4)

in the deep infrared. Either the squarks or the scalar mesons therefore develop negative masses-
squared!

Whether m2
q < 0 or m2

M < 0 depends on N , Nf , and the gauge and Yukawa couplings. For
m2

q < 0 and m2
M > 0, (this is the case for large N , with Nf � 3N=2), the theory has a stable

minimum with the global symmetry broken to SU(Nf �N)L�SU(N)L�SU(Nf )R�U(1)
0, or

with L and R exchanged. For m2
q > 0 and m2

M < 0, the tree-level potential is unbounded from
below along directions with non-zero M i

j vevs. However, along directions with rank(hM i
ji) > N

non-perturbative e�ects give a non-zero potential, so that the theory will most likely slide away

from the origin with the global symmetry broken to SU(N)V �SU(Nf�N)L�SU(Nf �N)R�
U(1)0.

The electric theory here is supersymmetric QCD, with N colors and Nf 
avors, and with

very small supersymmetry-breaking soft terms. In particular, the squarks and gauginos have
masses much smaller than the SU(N) scale, and are not decoupled. In the range of Nf discussed
above, Nf � 3N=2, this theory is strongly coupled in the infrared, and we cannot analyze it
directly. However, for very small supersymmetry breaking, duality may still hold, and we may

use the magnetic theory to learn something about the electric theory, at least to leading order in
the supersymmetry breaking. We may then conjecture that the chiral symmetry of the electric
theory is partially broken, with the maximal unbroken symmetry being either SU(Nf �N)L �
SU(N)L � SU(Nf)R � U(1)0, or SU(N)V � SU(Nf � N)L � SU(Nf �N)R � U(1)0. In either

case, the vector-like symmetry of the electric theory is partially broken. This is possible since
the theory contains light scalars.

4 Large supersymmetry breaking

We now turn to the other limiting case, that of large supersymmetry breaking. Here, the soft

masses generated in each theory are large compared with the scale of the theory (assuming it is
asymptotically free). The gauginos and squarks of the electric theory decouple, and this theory

approaches QCD, with N colors and Nf 
avors, for which we expect vector-like symmetries to
remain unbroken 12.

In the magnetic theory, we have to consider both one-loop and two-loop contributions to
the soft masses, since the one-loop contributions vanish at leading order in the supersymmetry-
breaking parameter, while the two-loop contributions do not. There is then some region of

supersymmetry breaking, where the two-loop contributions dominate. The signs of m2
q and m

2
M

again depend on N , Nf and the gauge and Yukawa couplings, but in the large N limit we have
m2

q < 0 and m2
M > 0. Then, as discussed in the previous section, the theory has a minimum

with the global symmetry broken to SU(Nf �N)L � SU(N)L � SU(Nf)R � U(1)0.

For larger supersymmetry breaking, the one-loop contributions become dominant. Then
we always have m2

M < 0. We immediately see that there is no region where the full chiral
symmetry remains unbroken. Thus, for large Nf , such that the electric theory is infrared free,
the two theories are clearly di�erent in the infrared. Furthermore, the magnetic theory can not

correspond to an infrared �xed point with the full chiral symmetry unbroken.
The sign of m2

q can be either positive or negative. For large Nf � N , it is almost always
positive, and for Nf � N = 3 it is almost always negative. As a result, the only possible

con�guration that preserves the vector-like symmetry of the theory has vanishing squark vevs,



and an M i
j vev proportional to the identity matrix. Along this direction, the tree-level potential

is unbounded from below. Since supersymmetry is badly broken, we have no control over non-
perturbative e�ects here. Still, if we estimate the nonperturbative potential by � �4

L(M), where

�L(M) is the strong coupling scale after integrating out the quark �elds which obtain masses
from the meson vevs, then the potential is lifted at large scales along the direction M / I for
a certain range of Nf , and the vacuum will slide away, with di�erent M i

j vevs. Some of the

vector symmetries of the theory will then be broken, in contradiction with what we expect for
the electric theory.

5 Conclusions

We have studied the infrared behavior of theories related by Seiberg duality in the presence of
supersymmetry breaking. The di�culty of not knowing what the soft supersymmetry breaking
terms in one theory map into in its dual is overcome by generating the soft breaking terms in
both theories by coupling them to the same sector which breaks supersymmetry spontaneously.

Generating soft breaking masses in the electric theory by heavy matter messengers corresponds
to generating soft breaking masses in the magnetic theory by heavy gaugemessengers. Assuming
a canonical K�ahler potential, we found that the soft breaking scalar masses squared generated
in the magnetic theory are often negative, leading to symmetry breaking in the magnetic theory.

If duality still holds approximately for small supersymmetry-breaking masses (much smaller
than the strong coupling scale) the (weakly coupled) magnetic theory may be used for studying
strongly coupled supersymmetric QCD with small supersymmetry-breaking masses. Our results

for the magnetic theory can be roughly summarized as follows: We obtain an interesting sum
rule, m2

q + m2
�q + m2

M = 0 in the deep infrared, so that the masses-squared of either the dual
squarks or the mesons are negative. In the region Nf � 3N=2, we �nd m2

q < 0; m2
M > 0 in the

deep infrared. The theory has a stable minimum with the symmetry broken to SU(Nf �N)L�
SU(N)L�SU(Nf)R�U(1)

0, or with L and R exchanged. When m2
q > 0; m2

M < 0 we �nd that
the symmetry is broken to SU(N)V � SU(Nf �N)L � SU(Nf �N)R � U(1)0.

We also consider the large supersymmetry-breaking limit. Below the soft supersymmetry-
breaking mass scale the squarks and gaugino in the electric theory decouple. The theory becomes
ordinary, non-supersymmetric QCD. In the magnetic theory we typically �nd that either the
mesons or the squarks or both obtain negative masses squared. As a result, the magnetic theory

has no stable minimum with unbroken vector-like symmetries within the minimal framework
we assumed. This is in contradiction to what we expect for non-supersymmetric QCD. The
candidate duals we considered therefore do not describe the same low-energy physics as ordinary
QCD.
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